

Home learning activities

Subject Science Year Group Year 10 Unit of work / Knowledge organiser Chemical Changes - 2 Activities • Complete the weekly 'Knowledge Check' through 'GCSEPod'. • Watch all 'GCSEPod' clips on the 'Chemical Changes' Unit. • Complete the 'GCSEPod' Questions assigned for this Unit of work and any
Year Group Year 10 Unit of work / Knowledge organiser Chemical Changes - 2 Activities • Complete the weekly 'Knowledge Check' through 'GCSEPod'. • Watch all 'GCSEPod' clips on the 'Chemical Changes' Unit.
Year 10 Unit of work / Knowledge organiser Chemical Changes - 2 Activities • Complete the weekly 'Knowledge Check' through 'GCSEPod'. • Watch all 'GCSEPod' clips on the 'Chemical Changes' Unit.
Unit of work / Knowledge organiser Chemical Changes - 2 <u>Activities</u> • Complete the weekly 'Knowledge Check' through 'GCSEPod'. • Watch all 'GCSEPod' clips on the 'Chemical Changes' Unit.
Chemical Changes - 2 Activities • Complete the weekly 'Knowledge Check' through 'GCSEPod'. • Watch all 'GCSEPod' clips on the 'Chemical Changes' Unit.
 Activities Complete the weekly 'Knowledge Check' through 'GCSEPod'. Watch all 'GCSEPod' clips on the 'Chemical Changes' Unit.
 Complete the weekly 'Knowledge Check' through 'GCSEPod'. Watch all 'GCSEPod' clips on the 'Chemical Changes' Unit.
• Watch all 'GCSEPod' clips on the 'Chemical Changes' Unit.
Complete the 'GCSEPod' Questions assigned for this Unit of work and any
additional assignments which have been set by your teacher.
Follow the 'Revision Plans' for Biology and Physics
 Complete the assigned activities for the given week on the Biology and Physics revision plans
Where do you complete the work?
Use computer/phone for 'GCSEPod' or 'Seneca' and study materials.
What to do if you finish the work? (Extension activity)
 Sign up for 'Seneca Learning' using the 'Sign Up Guide' sheet and the special passcode: j5v9tvzq48. Complete the assignments which have been set.
These websites might help:
 BBC Bitesize -> Secondary -> GCSE -> Combined Science -> AQA Trilogy -> Chemistry -> Chemical Changes <u>www.freesciencelessons.co.uk</u> -> GCSE Videos -> Chemistry Paper 1 -> Chemical Changes
If you are struggling with your work or if you have finished.
Please email your classroom teacher directly using the email list found in the Home Learning section of the website.

Year 10: Chemical Changes & Energy Changes

SMITH'S WOOD

Section 1: Key Te	rms
1 Metal oxide	Metals react with oxides to produce metal oxides. This is an oxidation reac- tion.
2 Displacement reaction	A more reactive metal can displace a less reactive metal from a compound.
3 Oxidation	Two definitions: Chemicals are oxidised if they gain oxygen in a reaction. Chemicals are oxidised if they lose electrons in a reaction. (HT)
4 Reduction	Two definitions: Chemicals are reduced if they lose oxygen in a reaction. Chemicals are reduced if they gain electrons in a reaction. (HT)
5 Acid	A chemical that dissolves in water to produce H+ ions.
6 Base	A chemical that reacts with acids and neutralise them. E.g. metal oxides , metal hydroxides , metal carbonate
7 Alkali	A base that dissolves in water. It produces OH- ions in solution.
8 Neutralisation	When a neutral solution is formed from reacting an acid and alkali . General equation: H* + OH· —> H ₂ O
9 pH	A scale to measure acidity/ alkalinity . A decrease of one pH unit causes a 10x increase in H+ ions . (HT)
10 Strong acid (HT)	A strong acid is completely ionised in solution. E.g. hydrochloric , nitric and sulfuric acids.
11 Weak acid (HT)	A weak acid is only partially ionised in solution. E.g. ethanoic , citric and carbonic acids.

Element	Reaction	Reactivit
12 Potassium	When potassium is added to water , the metal melts and floats. It moves around very quickly. The metal is also set on fire , with sparks and a lilac flame .	\land
13 Sodium	When sodium is added to water , it melts to form a ball that moves around on the surface. It fizzes rapidly .	ן א ו
14 Lithium	When lithium is added to water , it floats. It fizzes steadily and be- comes smaller.	
15 Calcium	Fizzes quickly with dilute acid.	
16 Magnesium	Fizzes quickly with dilute acid.	
17 (Carbon)		
18 Zinc	Bubbles slowly with dilute acid.	
19 Iron	Very slow reaction with dilute acid.	
20 (Hydrogen)		
21 Copper	No reaction with dilute acid.	

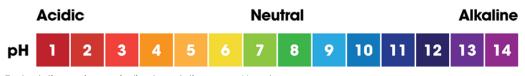
Acids produce hydrogen ions (H⁺) in aqueous solutions. Aqueous solutions of alkalis contain hydroxide ions (OH-).

22 Very unreacti	ve metals	Found naturally in the ground. Don't need extracting .
23 Metals less rea	active than carbon	Extracted by reduction with carbon .
24 Metals more r	eactive than carbon	Extracted by electrolysis .
Section 5: Rea	ctions of Acids	
25 With metal	Acid + Metal -> Sc	xlt + Hydrogen
26 With alkali	Acid + Metal Hydro (Neutralisation read	xide —> Salt + Water stion)
27 With metal oxide	Acid + Metal Oxide (Neutralisation read	
UXICE	Asial + Materil Carrier	onate —> Salt + Water + Carbon Dioxide

Section 6: Making a Soluble Salt

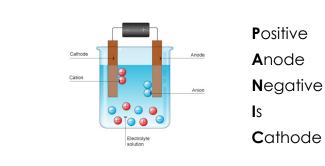
- Add solid metal, metal carbonate, metal oxide or metal hydroxide to an acid. 29
- 30 Add solid until no more reacts. 31
 - Filter off excess solid.
- 32 Evaporate to remove some of the water.
- 33 Leave to crystallise.
- 34 Remove all water in a **desiccator**/ oven.

Higher only:


A strong acid is completely ionised in aqueous solution. Examples of strong acids are hydrochloric , nitric and sulphuric acids.

A weak acid is only partially ionised in aqueous solution. Examples of weak acids are ethanoic, citric and carbonic acids.

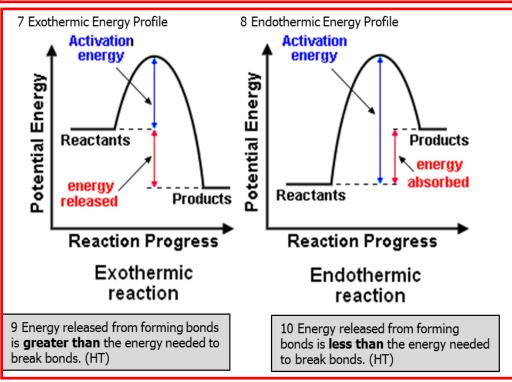
For a given concentration of aqueous solutions, the stronger an acid, the lower the pH.


As the pH decreases by one unit, the hydrogen ion concentration of the solution increases by a factor of 10.

pH scale

Test solutions using an indicator solution or a pH probe

Year 10: Chemical Changes & Energy Changes


Section 7 Elec	Section 7 Electrolysis key terms			
38 Electrolysis	The process of splitting an ionic compound by passing electricity through it.			
39 Electro- lyte	An ionic compound that is molten (melted) or dissolved in water . The ions are free to move .			
40 Electrode	An electrical conductor that is placed in the electrolyte and connected to the power supply .			
41 Cathode	The electrode attached to the negative terminal of the power supply .			
42 Anode	The electrode attached to the positive terminal of the power supply .			

Section 8: What is discharged in electrolysis?				
Electrolyte	Cathode	Anode		
43 Molten Compound	Metal	Non-metal		
44 Dissolved compound (aqueous solution)	The metal if the metal is less reactive than hydrogen . Hydrogen is produced if the metal is more reactive than hydrogen .	Oxygen is produced unless the solution contains halide ions (chloride, bromide, iodide) when the halogen (chlorine, bromine, iodine) is produced.		

Section 9: A	Aluminium Electrolysis
45 Cryolite	Aluminium oxide is dissolved in cryolite to lower its melting point. This saves money on energy costs.
	Positive Al ³⁺ ions move to the cathode. Aluminium is produced. Al ³⁺ + 3e- —> Al
47 Anode	Negative O²⁻ ions move to the anode . Oxygen is made. 2O²⁻ —> O₂ + 4e⁻ Wears away as the carbon anode reacts with oxygen to form carbon dioxide.

Section 7 Energy Changes Key Terms					
1 Conservation of energy	Energy is not created or destroyed , only transferred from one store to another				
2 Exothermic	A reaction that transfers energy to the surroundings so the temperature of the surroundings increases , e.g. combustion and neutral-isation reactions. Used in self-heating cans and hand warmers .				
3 Endothermic	A reaction that takes in energy from the surroundings so the temperature of the surroundings decreases , e.g. thermal decomposition . Used in sports injury packs .				
4 Activation energy	The energy needed for particles to successfully react.				
5 Breaking bonds	Energy is needed to break bonds.				
6 Forming bonds	Energy is released when bonds are formed.				

<u>Year 10</u>

As a minimum you should be spending 30-45 minutes on Biology revision per week. The tasks listed below could take more than this if you do all of them so you will need to plan your time effectively. Regular revision is the key to success at GCSE, don't do too much in one go! We recommend approaching this revision as follows:

Primrose Kitten: Combined Science Biology Paper 1 <u>https://www.youtube.com/watch?v=mKYQ-K23Mr4</u>

GCSE AQA Combined Science TRILOGY https://www.bbc.co.uk/bitesize/examspecs/z8r997h

- 1. 10-15 mins Read, cover and try to remember the information from You Tube and BBC Bitesize
- 2. 10-15mins creating your own revision resource to add to your folder (DO NOT COPY...TRANSFORM the information you have just read into something visual that you can remember)
- 3. 10-15mins Practicing application of what you have just revised, try exam questions and mark them using the mark schemes so you can correct your mistakes immediately!

Week beginning	Paper	Торіс	Review (Read, cover,	Revise and add to your revision folder	Teacher signed
			remember)		
Week 1		Cell Biology	Cell structure	Create a set of flash cards for each	
				cell and microscope type	
			Investigating cells		
Week 2	-		Cell Division	Create a mind map linking	
				chromosomes, mitosis, stem cells and their uses	
Week 3	-		Transport in and out	Create a comparison table for	
WEEK 5	Ρ		of cells	diffusion, osmosis and active	
	•			transport	
Week 4	Α	Organisation	Levels of	Create a pneumonic to remember	
			organisation	the order of the levels of	
	П			organisation	
Week 5	P		Digestion	Draw an outline of the digestive	
	-			system and label on what happens	
	E			at each part (including which	
				enzymes work at each part AND	
	R			what they break down)	
Week 6	• • •		Blood and	Make 3 posters to put up in your	
			circulation	room	
				 The make up of blood and the differences between the 3 	
	1			different blood vessels	
	1			- The heart and the direction of	
				blood flow through it	
				- Gas exchange in the lungs	
Week 7	-		Non-communicable	Create flash cards for the different	
			diseases	types of disease and their risk	
				factors	
Week 8			Transport in plants	Draw a plant and a cross section of	
				a leaf and label on the different	
				types of transport. Include	
				information of factors which may	
				affect the speed of the transport.	
Week 9		Infection and	Pathogens and	Create a table of diseases including	
		response	disease	information on pathogen, causes,	
				symptoms and treatment.	
Week 10			Human defences	Create a mind map of all the ways	
			against disease	your body defends against	

		Treating diseases	pathogens and then link this to boosting immunity with vaccines and the different ways we can treat diseases.
Week 11	Bioenergetics	Photosynthesis	Draw out the 3 rate of photosynthesis graphs and write a sentence to explain what is happening in each one.
Week 12		Respiration and exercise	Make flashcards for each of the key subtitles on this page, be sure to include the 3 equations you need to learn.

Year 10

As a minimum you should be spending 30-45 minutes on Physics revision per week. The tasks listed below could take more than this if you do all of them so you will need to plan your time effectively. Regular revision is the key to success at GCSE, don't do too much in one go! We recommend approaching this revision as follows:

Primrose Kitten: Combined Science Physics Paper 1 https://www.youtube.com/watch?v=xtw-Z0nllA4

GCSE AQA Combined Science TRILOGY https://www.bbc.co.uk/bitesize/topics/zqw77p3

- 1. 10-15 mins Read, cover and try to remember the information in the revision guide
- 2. 10-15mins creating your own revision resource to add to your folder (DO NOT COPY...TRANSFORM the information you have just read into something visual that can help you to remember)
- 3. 10-15mins Practicing application of what you have just revised, try exam questions and mark them using the mark schemes so you can correct your mistakes immediately!

Week	Paper	Торіс	Review	Revise and add to your revision folder	Teacher
beginning			(Read, cover,		signed
			remember)		
Week 1		Energy	Energy Stores	Create a glossary of the key words in RED on this double	
			and Transfers	page spread. Create flash cards containing the	
				rearrangement triangles for the two energy equations you	
				need to learn here.	
Week 2			Energy	Create sample flow diagrams for 3 or 4 different energy	
	Ρ		transfers and	changes e.g. a car accelerating, a skateboarder at the top	
	I		resources	of a ramp, boiling water in a kettle.	
	Λ			Make flashcards for all the different types of energy	
	Α			resources, include whether they are renewable or not and	
	_			their advantages and disadvantages.	
Week 3	Ρ	Electricity	Introduction	Create a poster of all the different components, their	
	-		to electricity	symbols and what they are used for. Include the charge	
	Ε			equation, power equation, efficiency equation and energy	
	L			transferred equation. Try and put the equations into the	
	П			rearrangement triangles.	
Week 4	R		Circuits and	Draw the 3 current/voltage graphs for resistors, filament	
			resistance	lamps and diodes and annotate around them to describe	
				what is happening.	
Week 5			Circuits and	Draw a comparison table for series and parallel circuits.	
	1		power	Include diagrams, information on current, resistance and	
	–			potential difference.	
Week 6			Domestic uses	Draw and label/annotate diagrams for D.C, A.C (give	
			of electricity	examples of appliances that use both current types) and	
				Wiring a three pin plug (explain what each part does).	
Week 7			Electrical	Draw a flow chart to show how electricity gets from the	
			energy in	power stations into our homes. Create a flash card with	
			devices	the advantages and disadvantages of overhead and	
W(Particle	De utiele us e del	underground cables.	
Week 8		Model of	Particle model	Draw the particle model for solids, liquids and gasses and	
		Matter	of matter	annotate the diagrams to include information on their	
				properties.	
				Draw a labelled diagram of the density practical and	
Week 0		Atomic	Atoms and	annotate with summarised method type bullet points.	
Week 9		Atomic	Atoms and	Create a timeline for the development of the model of the	
		Structure	isotopes	atom. Include diagrams of previous models as well as the	
				current accepted model and include the diagrams of the	
Week 10			Nuclear	experiments that helped prove this new model.	
Week 10			Nuclear	Create flash cards for each type of radiation to include	
			radiation	their components (diagrams), hazards and what they may be absorbed by.	
				be absorbed by.	

		Create a glossary of key terms for the key words in RED and summarise radioactive contamination into a short paragraph.	
Week 11	Half life	Draw the count rate graph for iodine-128 and explain what is half-life is and how you calculate it using the graph. Create a flash card for nuclear equations and thenPRACTICE, PRACTICE, PRACTICE!!	

'Seneca Learning' Sign-Up Guide Passcode: j5v9tvzq48

Step 1: Open an internet browser - *Any browser* except Internet Explorer will work.

Step 2: Go to SenecaLearning.com

Step 3: Click on "Get Started" or "Sign Up"

Step 4: Create your account - *If you don't know your parent email, then type: N/A.*

Step 5: Click on "Classes & Assignments" - You'll find this in the top menu.

Step 6: Click on "Join Class" - It's the green button in the top right corner.

Step 7: Type the code from your teacher - *If you* received a link instead, then open the link.